
Launching Jobs in
Parallel on ARC
Clusters

Matthew Brown/Ayat Mohammed/Chris Kuhlman/Sarah Ghazanfari/Sofia Lima
Advanced	Research	Computing
Information	Technology
Virginia	Tech

Summer 2024 ARC workshop Series

6/4/24
2

• Introductory / Orientation Workshops (2 hours each):
- Advanced Research Computing (ARC) Overview
- Connect to ARC systems and run your first jobs
- Get your software/code to run on ARC

• Special Topics (2 hours each):
-Launching in Parallel
-Monitoring Resource Utilization and Job Efficiency
SignIn:https://docs.google.com/document/d/1y4Ib1M9hOKZsTDxIGU
iMdvejl7L0N-1Ddc2ePqDUKYQ/edit?usp=share_link

Expectations

This is an informal workshop

Mostly informational about Advanced research computing
at VT

I want to hear your questions

Welcome to use chat to ask questions + some time at the
end

Feedback needed to help improve future workshops

6/4/24

Launching in Parallel on ARC Clusters

Description
Ø Prepare you with the essential knowledge to harness the power of parallel computing on ARC

clusters
Ø The details of parallel job execution
Ø Efficiently distribute computational workloads and maximize the utilization of ARC clusters
Ø Attendees who already have ARC accounts are invited to follow along with the

demonstrations if desired

Outline:
Ø MPIRUN vs. SRUN
Ø SRUN for resource detection and binding
Ø GNU parallel for load balancing
Ø Monitoring performance and binding

6/4/24
4

Parallelism is the New Moore’s Law

• Power and energy efficiency
impose a key constraint on
design of micro-architectures

• Clock speeds have plateaued
• Hardware parallelism is

increasing rapidly to make up
the difference

6/4/24
5

"Pleasingly Parallel"

Ø Computations are independent and can be executed simultaneously

Ø Examples: Parameter sweeps, numerical integration, BLAST searches

Ø Parallelization approaches and tools:

o At BASH script level: GNU/parallel, srun
o Matlab "parfor" to replace certain "for" loops
o FORTRAN/C codes on data structure operations: OpenMP (threads) and/or MPI

(ranks/tasks/processes)

6/4/24
6

MPIRUN vs. SRUN

• MPI
Ø Is a standardized interface for inter-process communication
Ø Several implementations (Intel MPI, OpenMPI, MPICH, MVAPICH, IBM)
Ø The startup mechanism is linked to the MPI library
Ø Startup commands may be called mpirun, mpiexec or something else

• srun
Ø srun is the standard SLURM command to start an MPI program
Ø It is well integrated with SLURM
Ø It automatically uses the allocated job resources: node list, tasks,

logical cores per task
Ø It chooses an optimal CPU binding for the tasks on an allocated host

6/4/24
7

MPIRUN vs. SRUN

6/4/24
8

Ø HPL is a computing benchmark
1. Pure MPI (1 process per core)
Ø Jobs in this case should typically be requested with –ntasks-per-node=128 (if you want full

node performance)
Ø Intel, using mpirun. We use an environment variable to make sure that MPI processes are laid

out in order and not moved around by the operating system:
module reset; module load HPL/2.3-intel-2019b #intel
mpirun -genv I_MPI_PIN_PROCESSOR_LIST=0-127 xhpl

Ø gcc, using mpirun. We use OpenMPI’s mapping and binding functionality to assign the processes
to consecutive cores:

module reset; module load HPL/2.3-foss-2020a #gcc
 mpirun --map-by core --bind-to core -x OMP_NUM_THREADS=1 xhpl

Ø Intel or gcc, using srun: srun --cpu-bind=cores xhpl

MPIRUN vs. SRUN

6/4/24
9

1. git clone
https://github.com/AdvancedResearchComputing/examples.git

2. cd examples/
3. cd hpl/
4. cd mpi/
5. sbatch -A personal hpl_mpi.sh

MPIRUN vs. SRUN(Contd.)

2. Hybrid MPI+OpenMP (1 MPI process/L3 cache):
Ø Start one MPI process per L3 cache (every 4 cores)
Ø Jobs in this case should typically be requested with -ntasks-per-node=32 -

cpus-per-task=4 so that Slurm knows how many processes.

Ø Intel: We use environment variables to tell mpirun to start a process on every
fourth core and use 4 OpenMP (MKL) threads per process:

mpirun -genv I_MPI_PIN_PROCESSOR_LIST="$(seq -s , 0 4 127)"
-genv I_MPI_PIN_DOMAIN=omp -genv OMP_NUM_THREADS=4 -genv
OMP_PROC_BIND=TRUE -genv OMP_PLACES=cores xhpl

Ø gcc: We use OpenMPI’s mapping and binding functionality to assign the processes
to L3 caches: mpirun --map-by ppr:1:L3cache --bind-to l3cache -x
OMP_NUM_THREADS=4 xhpl

6/4/24
10

MPIRUN vs. SRUN (Contd.)

• Intel or gcc, using srun: srun --cpu-bind=cores xhpl

• Intel or gcc, using Slurm’s srun launcher. We use a cpu mask to tell Slurm which cores each process
should have access to. (0xF is hexadecimal for 15, or 1111 in binary, meaning access should be allowed to
the first four cores. 0xF0 is 11110000 in binary, meaning access should be allowed to the second set of
four cores. The list continues through 11110000…..0000, indicating that the last process should have
access to cores 124-127.)

srun –cpu-
bind=mask_cpu=0xF,0xF0,0xF00,0xF000,0xF0000,0xF00000,0xF000000,0xF0000000,0xF0000
0000,0xF000000000,0xF0000000000,0xF00000000000,0xF000000000000,0xF0000000000000,
0xF00000000000000,0xF000000000000000,0xF0000000000000000,0xF00000000000000000,0
xF000000000000000000,0xF0000000000000000000,0xF00000000000000000000,0xF0000000
00000000000000,0xF0000000000000000000000,0xF00000000000000000000000,0xF0000000
00000000000000000,0xF0000000000000000000000000,0xF00000000000000000000000000,0
xF000000000000000000000000000,0xF0000000000000000000000000000,0xF0000000000000
0000000000000000,0xF000000000000000000000000000000,0xF000000000000000000000000
0000000 xhpl

Not recommended

11

MPIRUN vs. SRUN (Contd.)

ØThe results show the benefit of the hybrid MPI+OpenMP model
and of MKL over OpenBLAS, particularly in the hybrid model

6/4/24
12

MPIRUN vs. SRUN (Contd.)

• How can I run multiple short, parallel tasks inside one job?

ØAn example structure:

 # Specify the list of tasks
tasklist=task1 task2 task3
Loop through the tasks
for tsk in $tasklist; do
run the task $tsk
mpirun -np $SLURM_NTASKS ./a.out $tsk &

done
6/4/24

13

MPIRUN vs. SRUN (Contd.)

6/4/24
14

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi

• Using “mpi_quad.c”
• module load foss/2020b
• To compile: mpicc mpi_quad.c –o tc_nq_f20b_mpiquad
• salloc --nodes=4 --ntasks-per-node=16 --time=0:02:00 --account=personal
• To run: mpirun ./tc_nq_f20b_mpiquad

Ø Compilation	of	programs	may	need	additional	
o paths	to	header	files	(-I/path/to/inc)
o paths	to	libraries	(-L/path/to/lib)
o library	names	(-ldepend	for	/path/to/lib/libdepend.so)

Ø Intel,	GCC,	NVHPC,	etc.	all	use	different	options	which	are	not	cross	compatible.	Use	manual	and	--
help	to	investigate.	Edit	makefiles	to	customize	for	ARC	software/versions

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi

GNU/parallel for load balancing

Ø Multifunctional utility with lots of features and usages
Ø Great for passing arguments to repeated commands
Ø Much better for load balancing than BASH for loops
Ø Manual has lots of examples (man parallel)

Example:
Pass sequence of parameters to parallel executed code:

ls -d mw* | parallel tar -czf {}.tar.gz {}

Ø parallel + srun when running on several machines provides complimentary
features of srun

srun features:
o knows about hosts allocated to job and requested task layout
o can control cpu-binding

6/4/24
15

GNU/parallel for load balancing

Ø How can I run multiple serial tasks inside one job?

Define variables
numtasks=16
np=1
Loop through numtasks tasks
while [$np -le $numtasks]
do

 # Run the task in the background with input and output depending on the variable np
./a.out $np > $np.out &

Increment task counter
np=$((np+1))

done

Wait for all of the tasks to finish
wait

6/4/24
16

GNU/parallel for load balancing

Ø Rewriting a for-loop and a while-read-loop

(for color in red green blue ; do
for size in S M L XL XXL ; do
echo $color $size

done
done) | sort

Ø can be written like this:

parallel echo {1} {2} ::: red green blue ::: S M L XL XXL | sort

6/4/24
17

GNU/parallel for load balancing

6/4/24
18

Ø The	Slurm	Workload	Manager	is	used	in	many	clusters.	
Here	is	a	simple	example	of	using	GNU	parallel	to	call	srun:

1. File	pGNU:
#!/bin/bash

#SBATCH --account=personal
#SBATCH --partition=normal_q
#SBATCH --time 00:02:00
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --job-name GnuParallelDemo
#SBATCH --output gnuparallel.out
#module purge
#module load gnu_parallel
my_parallel="parallel --delay .2 -j $SLURM_NTASKS"
my_srun="srun --export=all --exclusive -n1"
my_srun="$my_srun --cpus-per-task=1 --cpu-bind=cores"
$my_parallel "$my_srun" echo This is job {} ::: {1..20}

2. Submit	the	job	as:

sbatch pGNU

3. Open	gnuparallel.out:

vi gnuparallel.out

GNU/parallel for load balancing

Ø Parallelizing rsync
Ø rsync is a great tool, but sometimes it will not fill up the available bandwidth. Running multiple rsync in parallel

can fix this
cd src-dir
find . -type f | parallel -j10 -X rsync -zR -Ha ./{} infer1.arc.vt.edu:./JLAB/
Ø Adjust -j10 until you find the optimal number
Ø rsync -R will create the needed subdirectories, so all files are not put into a single dir. The ./ is needed so the

resulting command looks similar to:
rsync -zR ././sub/dir/file fooserver:/dest-dir/
Ø The /./ is what rsync -R works on.
Ø If you are unable to push data, but need to pull them and the files are called digits.png (e.g. 000000.png) you

might be able to do:

seq -w 0 99 | parallel rsync -Havessh fooserver:src/*{}.png destdir/

6/4/24
19

"Built-in" or library-based parallelism
MATLAB examples:
1. Built-in Arithmetic Uses Available Cores

module load tinkercliffs-rome/matlab/R2021a
srun –A personal --nodes=1 --ntasks=1 --cpus-per-task=32 --pty matlab -nosplash -
nosoftwareopengl -sd `pwd`
>> N=25000; A=rand(N); B=rand(N); tic; A*B; toc;

2. parpool spawns workers to which parfor can farm out tasks

>> parpool(32);
>> tic; n=200; A=2000; a=zeros(1,n); parfor i=1:n; a(i)=max(abs(eig(rand(A)))); end; toc;

3. Using GPUs: gpuArray: A = gpuArray([1 0 1; -1 -2 0; 0 1 -1]); e = eig(A);

6/4/24
20

SRUN	for	resource	detection	and	binding

6/4/24
21

Ø Job	allocation	on	a	DGX	node:

--ntasks-per-node=32 --gres=gpu:2

Ø srun	uses	a	subset	here:

srun --ntasks=8 python mpi_scatter.py

$cat mpi_cupy.py

from mpi4py import MPI
import cupy as cp

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

dev = cp.cuda.Device(rank)
print("rank:",rank,'bus_id:', dev.pci_bus_id)
print(dev.mem_info)

Ø We	need	custom	gpu-binding	to	get	the	separate	MPI	ranks	
to	“see”	different	GPU	devices:

srun --ntasks=2 --gpu-bind=single:1 python mpi_cupy.py

Monitoring performance and binding

Ø OMP_PLACES is employed to specify places on the machine where the threads are
put. However, this variable on its own does not determine thread pinning completely,
because your system still won't know in what pattern to assign the threads to the
given places. Therefore, you also need to set OMP_PROC_BIND

Ø OMP_PROC_BIND specifies a binding policy which basically sets criteria by which
the threads are distributed

Ø If you want to get a schematic overview of your cluster's hardware, e. g. to figure
out how many hardware threads there are, type: $ lstopo

Ø STREAM is a memory bandwidth benchmark. To maximize bandwidth, we run in
parallel with one process per L3 cache (cores 0, 4, …, 124).

6/4/24 22

https://www.cs.virginia.edu/stream/

Monitoring performance and binding
#Load the Intel toolchain
module reset; module load intel/2019b

#Tell OpenMP to use every 4th core
export OMP_PROC_BIND=true
export OMP_NUM_THREADS=32
export OMP_PLACES="$(seq -s },{ 0 4 127 | sed -e 's/\(.*\)/\{\1\}/')"

#Compile
icc -o stream.intel stream.c -DSTATIC -DNTIMES=10 -

DSTREAM_ARRAY_SIZE=2500000000 \
-mcmodel=large -shared-intel -Ofast -qopenmp -ffreestanding -qopt-streaming-stores

always

#Run
./stream.intel

23

Monitoring performance and binding

24

• How	can	I	monitor	GPU	utilization	during	my	job?
Ø Add	a	line	like	this	to	a	batch	script	prior	to	starting	a	gpu	workload:

nvidia-smi
--query-gpu
=timestamp,name,pci.bus_id,driver_version,temperature.gpu,utilization.gpu,utilization.memory,mem
ory.total,memory.free,memy.used --format=csv -l 3 > $SLURM_JOBID.gpu.log &

The	&	causes	the	query	to	run	in	the	background	and	keep	running	until	the	job	ends	or	this	process	is	
manually	killed.	The	> $SLURM_JOBID.gpu.log causes	the	output	to	be	redirected	to	a	file	whose	name	is	the	
numerical	job	id	followed	by	.gpu.log.

Ø The	-l	3	is	for	the	repeating	polling	interval.	From	the	nvidia-smi	manual:

-l SEC, --loop=SEC
Ø Continuously	report	query	data	at	the	specified	interval,	rather	than	the	default	of	just	once.

Ø For	details	on	query	options:	nvidia-smi --help-query-gpu

Monitoring performance and binding

25

Ø Output from nvidia-smi run as above looks like this for a 2-gpu job (notice the different gpu
identifier strings):

2021/10/29 16:36:30.047, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:33.048, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 58, 16 %, 4 %, 81251 MiB, 66511 MiB, 14740 MiB
2021/10/29 16:36:33.053, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:36.054, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 65, 98 %, 15 %, 81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:36.055, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:39.055, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 67, 100 %, 36 %, 81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:39.056, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:42.057, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 54, 10 %, 2 %, 81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:42.058, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:45.059, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 54, 0 %, 0 %, 81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:45.060, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:48.060, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 68, 100 %, 26 %, 81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:48.061, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:51.062, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 52, 20 %, 3 %, 81251 MiB, 66571 MiB, 14680 MiB
2021/10/29 16:36:51.063, A100-SXM-80GB, 00000000:CB:00.0, 460.73.01, 41, 0 %, 0 %, 81251 MiB, 81248 MiB, 3 MiB
2021/10/29 16:36:54.064, A100-SXM-80GB, 00000000:07:00.0, 460.73.01, 52, 0 %, 0 %, 81251 MiB, 66571 MiB, 14680 MiB

Ø Follow the output with tail -f <jobid>.gpu.log

Support, Consultation and Collaboration

ARC Helpdesk: https://arc.vt.edu/support

ARC Helpdesk GRAs work as a team to handle most incoming questions/problems.
“How do I setup SSH keys for authentication?” “What can I do to get my job to
launch faster?” “Why did my job stop?”
“Is MATLAB available on Huckleberry?” “How can I share my files with my
collaborator?”
Escalate to ARC Computational Scientists as needed.

Office Hours (https://arc.vt.edu/office-hours)

6/4/24
26

https://arc.vt.edu/support

Thanks for watching and listening!

• ARC Website: www.arc.vt.edu

• My contact info: Ayat Mohammed
 maaayat@vt.edu

6/4/24
27

http://www.arc.vt.edu/

